










us to offer quantitative predictions on the evo-
lution of a scientific career.

The predictive power of the hidden
parameter Q

The true value of the Q parameter comes in its
predictive power:
(i) The Q parameter allows us to estimate the

number of papers a scientist needs to write so
that her highest-impact paper gathers c10* cita-
tions (Fig. 6B). We find that scientists with low
Q (≃1.2) must write at least 100 papers so that
one of them gathers on average 30 citations.
Yet, a scientist with the same productivity but
Q = 10 is expected to author a c10* = 250 paper.
Doubling productivity will enhance only with
seven citations the highest-impact paper of the
low-Q scientist (Q = 1.2), whereas it will boost
with more than 50 citations c10* for the high-Q
scientist. Overall, Fig. 6B documents that for
low-Q scientists, increased productivity cannot
boost substantially the chance of publishing a

high-impact work; hence, it is very unlikely that
they “get lucky.”
(ii) A scientist’s h-index, indicating that her

h most-cited papers gather at least h citations
(12, 15), is jointly determined by the Q param-
eter and the productivity N (section S4.11). This
analytical prediction reproduces not only the
observed h-index of all scientists (fig. S33B) but
also the evolution of the h-index during a sci-
entist’s career (Fig. 6, C and D, and fig. S34A).
Similar equations describe the cumulative num-
ber of citations (Fig. 6D and figs. S33, D to F,
and S34B) and the g-index (section S4.11), indi-
cating that the traditional performance measures
are uniquely determined by Q. Given that Q is
constant in time, we conclude that productivity
only can account for career-wide changes in these
measures (Fig. 6, C and D).
(iii) By determining the value of Q during the

early stages of a scientific career, we can use it
to predict future career impact. The estimation
error DQ of Q decreases with the number of pub-

lished papers N and drops below 10% already
after N = 20 publications (section S4.12). We can
therefore estimate Q based on a scientist’s first
N0 published papers in Eq. 3 and then use the
analytical expression of the h-index and of the
total number of citations to predict the future
impact of a scientist (section S4.12 and fig. S35).
Given the stochastic nature of the Q-model, an
uncertainty envelope accompanies the most likely
value of each impact metric. In Fig. 6E, for two
scientists, we show the h-index prediction up to
N = 150 after we estimated Q from the first N0 =
20 (top) and N0 = 50 (bottom) papers. Although
the initial h-index overlaps for the two scientists,
their long-term impact diverges, a difference ac-
curately predicted by the Q-model. Generalizing
for a larger sample of scientists, we find a strong
correlation between the predicted and observed
h-index (Fig. 6F). To quantify the Q model’s over-
all predictive accuracy, we measured the fraction
of times that the h-index falls within the envelope
for scientists with at least 100 papers. The zN
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Fig. 4. Careers and
their Q parameter.
(A) Left: Analytically
predicted cumulative
impact distributions
for different Q. The
plot also highlights
the impact distribution
of the three scientists
shown in Fig. 2E. The
detailed publication
record of each scientist
is reported on the
right, documenting the
notable differences
between them, given
their different Q.
(B) Left: Individual
cumulative impact
distributions P(c10,i).
Given the modest
number of pub-
lications N character-
izing most scientists
and the impossibility
to compute statisti-
cally meaningful dis-
tributions for many of
them, each distribution
is computed across
all publications of all
scientists with the
same Qi.The color code
captures their Q
parameter, as shown in
(A). Right: Cumulative
distributions of the
rescaled impact c10,i/Qi

for the scientists, indi-
cating that the individ-
ual distributions
collapse on the univer-
sal distribution P(p).
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score for each scientist captures the number
of SDs the real h-index deviates from the most
likely h-index after N publications. We find
that 71% of scientists have z40 ≤ 2 based on N0 =
20, which improves to 81% for N0 = 50 and z70
(Fig. 6G). Together, we conclude that the es-
timation of the Q parameter at early stages
has the capability to unveil the long-term career
impact.
(iv) To test whether Qi correlates with out-

standing impact, we ranked scientists on the
basis of Q, N, Ctot, c10* , and their h-index. To val-
idate these rankings, we use a receiver operat-
ing characteristic (ROC) plot that measures the
fraction of Nobel laureates at the top of the
ranked list (Fig. 6A). We find that the Q-based
ranking predicts Nobel-winning careers most
accurately, offering the highest area of all rank-
ing measures (Fig. 6A) and the highest precision
and recall (section S7 and fig. S45). Equally no-
table is the finding that the predictive powers of
Ctot, c10* , and the h-index are indistinguishable
from each other and that the productivity N is
the least predictive. Similar results are obtained
if we use Qi to detect Dirac and Boltzmann
medalists (figs. S46 and S47). The early-career
Q has also the best accuracy in predicting Nobel
laureates (section S7.1 and fig. S48).
High-impact discoveries often result from col-

laborative work (31–33), mixing scientists with
different Qi. To explore the influence of collab-
orators (34, 35), we used a credit allocation al-
gorithm (22, 36) to attribute different impact
shares to each author. We then repeated our
entire analysis, finding that the Q-model, with
slightly revised parameters, can explain the re-
sults (section S6.1 and figs. S40 to S43). Further,
we find that Qi is robust to the omission of in-
dividual collaborators (section S6.2 and fig. S44).
Hence, although collaborative and team effects
modulate the success of a particular publication,

individual collaborators have only limited influ-
ence on Qi.

Summary and discussion

In summary, we offer empirical evidence that
impact is randomly distributed within the se-
quence of papers published by a scientist, im-
plying that temporal changes in impact during
a scientific career can be explained by temporal
changes in productivity, luck, and the heavy-
tailed nature of a scientist’s individual impact
distribution. This finding allowed us to system-
atically untangle the role of productivity, luck,
and a scientist’s Q, predicting that truly high-
impact papers require a combination of high
Q and luck (high p) and that high productivity
alone has only a limited effect on the like-
lihood of high-impact work in a scientific career,
if it is not associated with high Q. The mea-
surable Q parameter represents a scientist’s
sustained ability to publish high-impact (or
low-impact) papers.
Virtually, all currently used metrics of per-

formance change during the career of a scien-
tist, capturing progression, not sustained ability.
In contrast, Q is constant throughout a scientist’s
career for most scientists (76%), and it is not dom-
inated by a single paper or collaborator, being
a measure intrinsically linked to an individual.
The fundamental nature of the Q parameter is
supported by the fact that the currently used
metrics of success, from the h-index to cumulative
citations, can be calculated from it. Q predicts not
only the value but also the time evolution of the
traditional impact metrics (Fig. 6, C to F).
All findings presented above are based on a

subset of 2887 physicists with a career spanning
at least 20 years and a persistent publication
record. These scientists have reached a mid- or
late-career stage and hence can be considered
successful as they survived many selection pro-

cesses in academia. Although our findings hold
in at least six more different disciplines (see
section S1.2) and are robust to relaxing the se-
lection criteria (see section S1.4), the studied data
sets do not feature young scientists who have left
academia early and hence have published only a
few papers.
Throughout this work, we have treated long-

term impact, as captured by c10* , as an exogenous
variable. It seems reasonable, however, that pro-
ductivity and impact could influence each other.
From amechanistic perspective, for example, some
early promising publications might help attract the
resources leading to further productivity growth.
Early-career impact, quantified with the average
hc10i for the first 10 papers of a scientist, is as-
sociated with career longevity, indicating that
the probability to stay in academia is slightly
influenced by the impact of a scientist’s early
publications (fig. S49). The Q-model also indi-
cates that the overall number of papers in a
career weakly correlates with high Q (Eq. 2).
Although the Q-model and the predictions pro-
vided here are immune from a possible coupling
between early impact and overall productivity
(section S5), these preliminary findings call for
more measurements and models that can accu-
rately capture the coevolution of short-term early
impact and productivity (37).
Although Q can accurately predict a career

impact, the dependence of Q on exogenous fac-
tors, such as the quality of the education and cur-
rent institution (38, 39), size of the research
community (24, 40), gender (41, 42), dynamics
of subfields (43, 44), or publication habits, re-
mains unknown. Mathematically speaking, the
model remains the same if the Q parameter re-
flects other factors that characterize a scientist.
The various robustness checks we performed to
discover possible confounding factors, such as
career length, decade, team effects, and the analysis
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Fig. 5. Stability of
the Q parameter.
(A) Time variation of
the Q parameter during
individual careers. For
scientists with at least
100 papers and Q ≃
1.2, Q ≃ 3.8, and Q ≃
6.5, we report Q(DN),
measured in a moving
window of DN = 30
papers. For 75% of
the scientists, the
fluctuations are
because we have a
finite number of papers in the moving window, the magnitude of the
changes being comparable to that predicted by the model with a constant
Q (section S4.9). (B) Fluctuations of the Q parameter in model and data.

We study the distribution of the uncertainty,
QðDNÞ

Q
, in both data and syn-

thetic careers with constant Q (DN = 5). For 74.7% of the scientists, the
fluctuations are comparable to those of the model. For the remaining 25.3%,
the SD is slightly higher than the one predicted by the model. (C) Comparison
between early and late Q parameter.We compare the Q parameter at early-

career (Qearly) and late-career (Qlate) stage of 823 scientists with at least
50 papers. We measured the two values of the parameters using only the
first and second half of published papers, respectively. We perform these
measurements on the real data (circles) and on randomized careers, where
the order of papers is shuffled (gray shaded areas). For most of the careers,
95.1%, the changes between early- and late-career stages fall within the
fluctuations predicted by the null model with randomized paper order, indicating
that the Q parameter is stable throughout a career. The observed fluctuations
are explained by the finite number of papers in a scientist’s career.
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of different disciplines and data sets, have failed to
offer a simple, straightforward explanation for
the origin of the different Q values scientists
have. Most likely, the Q parameter is affected by
multiple factors, rather than a single one, and
more information about its nature might be un-
veiled once other detailed career information,
such as grants and awards, will be available and
included in the analysis. Nevertheless, the key
differentiating factor of Q from luck is that it
has to be sustained. Q is not determined by a
single paper, a lucky draw, but by a sustained
high performance, throughout the scientist’s
career. This is reflected in the hlog c10i term in

Eq. 3, indicating that a single very high impact
paper has only a small impact on Q. A scientist
needs multiple high c10 papers to ensure a high
Q. Uncovering the origin of the Q parameter is a
promising future goal, which not only could offer
a better understanding of the emergence and
evolution of scientific excellence but also might
improve our ability to train and nurture high-
impact scientists.

Methods
Data sets

We explore two types of data sets: (i) the pub-
lication record of 236,884 physicists publishing

in the journal family Physical Review from 1893
to 2010 [American Physical Society (APS) data
set, see section S1.1 and figs. S1 and S2] and (ii)
the combination of 24,630 Google Scholar ca-
reer profiles with Web of Science (WoS) data,
covering 514,896 publications in biology, chem-
istry, cognitive sciences, ecology, economics, and
neuroscience (WoS data set, described in section
S1.2 and fig. S3). The results shown in this article
refer to 2887 scientists, whose publication record
spans at least 20 years, who have at least 10 pub-
lications and have authored at least one paper
every 5 years, derived from the APS data set (see
section S1.3).
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Fig. 6. Relation
between Q and other
impact indicators.
(A) ROC plot
capturing the ranking
of scientists based on
Q, Ctot, h-index, c10* ,

and N. Each curve
represents the frac-
tion of Nobel lau-
reates versus the
fraction of other sci-
entists for a given
rank threshold. The
diagonal (no-
discrimination line)
corresponds to ran-
dom ranking; the area
under each curve pro-
vides our accuracy to
rank high Nobel lau-
reates. The ranking
accuracy is reported in
the legend, 1 being the
maximum. Precision
and recall as a function
of rank are discussed
in section S7. (B)
Expected citations to
the highest-impact

paper, c10* , for a scien-
tist with parameter Q
and N publications.The
plot illustrates the very
low chance of a low Q
researcher to publish a
high-impact paper. (C)
Observed versus pre-
dicted growth of the h-
index for scientists with different Q. The plot documents the agreement
between the analytically predicted h-index (eq. S38, continuous line) and
the observed value 〈h(N)〉, obtained by averaging the h-index for scientists
with the same Q (circles). (D) Top: Growth of the h-index for two scientists
with at least 200 papers and different Q as a function of the productivity N
(blue circles), compared with the prediction of eq. S38 (red line). Bottom: For
the two scientists in the top panels, we measure the cumulative number of
citations as a function of N, Ctot (N), and compare with the prediction of eq.
S39. The close agreement between observation and prediction in (C) and
(D) shows that the time-independent Q captures an intrinsic property of a
scientist and that other indicators, like the h-index or cumulative citations,
are uniquely determined by Q and productivity. (E) For two scientists, we show

the h-index prediction as a function of N using only early-career information,
namely, N0 = 20 (top) and N0 = 50 (bottom), to estimate the Q parameter.
Although the initial h-index up to N0 = 20 highly overlaps for the two
scientists, their long-term impact diverges, a difference accurately predicted
by the Q-model. (F) Scatterplots of predicted and real h-index at N = 60
based on Q estimated at N0 = 20. The error bars indicate prediction
quartiles (25 and 75%) in each bin and are colored green if y = x lies between
the two quartiles in that bin and red otherwise. The circles correspond to
the average h-index in that bin. (G) The zN score for each scientist cap-
tures the number of SDs the real h-index deviates from the most likely
h-index after N publications. zN ≤ 2 indicates that the real data are within the
prediction envelope.
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Note that the APS data set contains only cita-
tions within the Physical Review corpus (see section
S1.1); for this reason, the specific number citation
numbers are systematically smaller compared to
the citations reported by the WoS database.
Our findings are also supported by the anal-

ysis of different samples of scientists in the APS
data set, selected using a number of different
criteria (see section S1.4), and by the analysis of
all other disciplines in the WoS data set, which
are reported in the Supplementary Materials
and referenced throughout the article.

Citation measures

Citation-based measures of impact are affected
by three major problems: (i) citations follow dif-
ferent dynamics for different papers (6, 45), (ii)
the average number of citations changes over time
(24) and (iii) citation count is subfield-dependent
(24). To overcome (i) for each paper, we use the
cumulative number of citations the paper received
10 years after its publication, c10, as a measure
of its scientific impact (6, 45). We can correct for
(ii) and (iii) by normalizing c10 by the average hc10i
of papers published in the same year. Because
these corrections do not alter our conclusions
for the APS data set, we report results without
normalization. For the WoS data set, we instead
used normalized citation counts.

Q-model

The stochastic process behind the Q-model is
determined by the joint probability P (p,Q,N).
The model assumes that a scientist i has a pro-
ductivity Ni and a parameter Qi sampled from
the marginal distribution P (Q,N), and then ex-
tracts Ni values of p from the conditional dis-
tribution P(p|Q,N). By assuming that P (p,Q,N)
follows a trivariate log-normal distribution with
parameters m and S, we can write the likelihood
function Li that a scientist i with Qi and Ni has
a sequence of papers {a} with impact {Qipa}
(see Eq. 1). Finally, with numerical optimization
methods, we identify the maximum of the over-
all log-likelihood function log L = Si Li, which
provides the numerical estimate of m and S re-
ported in Eq. 2 (see also sections S4.3 and S4.4).
This approach also estimates Qi, obtained by
maximizing the likelihood function Li for each
scientist. The maximization provides an analytical
expression for Qi, which, for large productivity
Ni, converges to Eq. 3 (see section S4.5)
This procedure and the measured parame-

ters allow us to generate synthetic sequences
of publications: We first extract an individual
parameter Q and a productivity N from the
distribution P (Q,N). Then, each paper in the
synthetic sequence is assigned an impact pQ,
where p is randomly drawn from the distribution
P(p), identical for all scientists.
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each scientist and remains constant during the scientist's career.

 that is particular toQmodel of impact, based on an element of randomness, productivity, and a factor 
generating a high-impact paper is not an entirely random one. The authors developed a quantitative
paper with the greatest impact occurs randomly in a scientist's career. However, the process of 
productivity (which is usually greatest early in the scientist's professional life) is accounted for, the
publications of 2887 physicists, as well as data on scientists publishing in a variety of fields. When 

 analyzed theet al.Are there quantifiable patterns behind a successful scientific career? Sinatra 
Qthat is the −−Scientific impact
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